Contents

CHAPTER

I THE EXPONENTIAL AND THE UNIFORM DENSITIES 1
 1. Introduction 1
 2. Densities. Convolutions 3
 3. The Exponential Density 8
 5. The Persistence of Bad Luck 15
 6. Waiting Times and Order Statistics 17
 7. The Uniform Distribution 21
 8. Random Splittings 25
 9. Convolutions and Covering Theorems 26
 10. Random Directions 29
 11. The Use of Lebesgue Measure 33
 12. Empirical Distributions 36
 13. Problems for Solution 39

CHAPTER

II SPECIAL DENSITIES. RANDOMIZATION 45
 1. Notations and Conventions 45
 2. Gamma Distributions 47
*3. Related Distributions of Statistics 48
 4. Some Common Densities 49
 5. Randomization and Mixtures 53
 6. Discrete Distributions 55

* Starred sections are not required for the understanding of the sequel and should be omitted at first reading.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>Bessel Functions and Random Walks</td>
<td>58</td>
</tr>
<tr>
<td>8.</td>
<td>Distributions on a Circle</td>
<td>61</td>
</tr>
<tr>
<td>9.</td>
<td>Problems for Solution</td>
<td>64</td>
</tr>
</tbody>
</table>

CHAPTER

III DENSITIES IN HIGHER DIMENSIONS. NORMAL DENSITIES AND PROCESSES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Densities</td>
<td>66</td>
</tr>
<tr>
<td>2.</td>
<td>Conditional Distributions</td>
<td>71</td>
</tr>
<tr>
<td>3.</td>
<td>Return to the Exponential and the Uniform Distributions</td>
<td>74</td>
</tr>
<tr>
<td>*4.</td>
<td>A Characterization of the Normal Distribution</td>
<td>77</td>
</tr>
<tr>
<td>5.</td>
<td>Matrix Notation. The Covariance Matrix</td>
<td>80</td>
</tr>
<tr>
<td>6.</td>
<td>Normal Densities and Distributions</td>
<td>83</td>
</tr>
<tr>
<td>*7.</td>
<td>Stationary Normal Processes</td>
<td>87</td>
</tr>
<tr>
<td>8.</td>
<td>Markovian Normal Densities</td>
<td>94</td>
</tr>
</tbody>
</table>

CHAPTER

IV PROBABILITY MEASURES AND SPACES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Baire Functions</td>
<td>104</td>
</tr>
<tr>
<td>2.</td>
<td>Interval Functions and Integrals in \mathbb{R}^r</td>
<td>106</td>
</tr>
<tr>
<td>3.</td>
<td>σ-Algebras. Measurability</td>
<td>112</td>
</tr>
<tr>
<td>4.</td>
<td>Probability Spaces. Random Variables</td>
<td>115</td>
</tr>
<tr>
<td>5.</td>
<td>The Extension Theorem</td>
<td>118</td>
</tr>
<tr>
<td>6.</td>
<td>Product Spaces. Sequences of Independent Variables</td>
<td>121</td>
</tr>
<tr>
<td>7.</td>
<td>Null Sets. Completion</td>
<td>125</td>
</tr>
</tbody>
</table>

CHAPTER

V PROBABILITY DISTRIBUTIONS IN \mathbb{R}^r

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Distributions and Expectations</td>
<td>128</td>
</tr>
<tr>
<td>2.</td>
<td>Preliminaries</td>
<td>136</td>
</tr>
<tr>
<td>3.</td>
<td>Densities</td>
<td>138</td>
</tr>
<tr>
<td>4.</td>
<td>Convolutions</td>
<td>143</td>
</tr>
</tbody>
</table>
5. Symmetrization 148
6. Integration by Parts. Existence of Moments 150
7. Chebyshev's Inequality 151
8. Further Inequalities. Convex Functions 152
*10. Conditional Distributions 160
*11. Conditional Expectations 162
12. Problems for Solution 165

CHAPTER

VI A SURVEY OF SOME IMPORTANT DISTRIBUTIONS AND PROCESSES 169
1. Stable Distributions in \mathbb{R}^1 169
2. Examples 173
3. Infinitely Divisible Distributions in \mathbb{R}^1 176
4. Processes with Independent Increments 179
*5. Ruin Problems in Compound Poisson Processes 182
6. Renewal Processes 184
7. Examples and Problems 187
8. Random Walks 190
9. The Queuing Process 194
10. Persistent and Transient Random Walks 200
11. General Markov Chains 205
*12. Martingales 209
13. Problems for Solution 215

CHAPTER

VII LAWS OF LARGE NUMBERS. APPLICATIONS IN ANALYSIS 219
1. Main Lemma and Notations 219
2. Bernstein Polynomials. Absolutely Monotone Functions 222
3. Moment Problems 224
*4. Application to Exchangeable Variables 228
*5. Generalized Taylor Formula and Semi-Groups 230
6. Inversion Formulas for Laplace Transforms 232
CONTENTS

CHAPTER X

MARKOV PROCESSES AND SEMI-GROUPS

1. The Pseudo-Poisson Type
2. A Variant: Linear Increments
3. Jump Processes
4. Diffusion Processes in \mathbb{R}^1
5. The Forward Equation. Boundary Conditions
6. Diffusion in Higher Dimensions
7. Subordinated Processes
8. Markov Processes and Semi-Groups
9. The "Exponential Formula" of Semi-Group Theory
10. Generators. The Backward Equation

CHAPTER XI

RENEWAL THEORY

1. The Renewal Theorem
2. Proof of the Renewal Theorem
3. Refinements
4. Persistent Renewal Processes
5. The Number N_t of Renewal Epochs
6. Terminating (Transient) Processes
7. Diverse Applications
8. Existence of Limits in Stochastic Processes
9. Renewal Theory on the Whole Line
10. Problems for Solution

CHAPTER XII

RANDOM WALKS IN \mathbb{R}^1

1. Basic Concepts and Notations
2. Duality. Types of Random Walks
3. Distribution of Ladder Heights. Wiener-Hopf Factorization
3a. The Wiener-Hopf Integral Equation
CONTENTS

4. Examples .. 404
5. Applications 408
6. A Combinatorial Lemma 412
7. Distribution of Ladder Epochs 413
8. The Arc Sine Laws 417
9. Miscellaneous Complements 423
10. Problems for Solution 425

CHAPTER

XIII LAPLACE TRANSFORMS. TAUBERIAN THEOREMS. RESOLVENTS . 429
1. Definitions. The Continuity Theorem 429
2. Elementary Properties 434
3. Examples ... 436
4. Completely Monotone Functions. Inversion Formulas . 439
5. Tauberian Theorems 442
*6. Stable Distributions 448
*7. Infinitely Divisible Distributions 449
*8. Higher Dimensions 452
9. Laplace Transforms for Semi-Groups 454
10. The Hille-Yosida Theorem 458
11. Problems for Solution 463

CHAPTER

XIV APPLICATIONS OF LAPLACE TRANSFORMS 466
1. The Renewal Equation: Theory 466
2. Renewal-Type Equations: Examples 468
3. Limit Theorems Involving Arc Sine Distributions . 470
4. Busy Periods and Related Branching Processes . 473
5. Diffusion Processes 475
6. Birth-and-Death Processes and Random Walks 479
7. The Kolmogorov Differential Equations 483
8. Example: The Pure Birth Process 488
9. Calculation of Ergodic Limits and of First-Passage Times 491
10. Problems for Solution 495
CHAPTER XV CHARACTERISTIC FUNCTIONS
1. Definition. Basic Properties 498
2. Special Distributions. Mixtures 502
2a. Some Unexpected Phenomena 505
3. Uniqueness. Inversion Formulas 507
4. Regularity Properties 511
5. The Central Limit Theorem for Equal Components 515
6. The Lindeberg Conditions 518
7. Characteristic Functions in Higher Dimensions 521
*8. Two Characterizations of the Normal Distribution 525
9. Problems for Solution 526

CHAPTER XVI* EXPANSIONS RELATED TO THE CENTRAL LIMIT THEOREM
1. Notations 532
2. Expansions for Densities 533
3. Smoothing 536
4. Expansions for Distributions 538
5. The Berry-Esseen Theorems 542
6. Expansions in the Case of Varying Components 546
7. Large Deviations 548

CHAPTER XVII INFINITELY DIVISIBLE DISTRIBUTIONS
1. Infinitely Divisible Distributions 554
2. Canonical Forms. The Main Limit Theorem 558
2a. Derivatives of Characteristic Functions 565
3. Examples and Special Properties 566
4. Special Properties 570
5. Stable Distributions and Their Domains of Attraction 574
*6. Stable Densities 581
7. Triangular Arrays 583
*8. The Class L 588
*10. Infinite Convolutions 592
11. Higher Dimensions 593
12. Problems for Solution 595

CHAPTER

XVIII APPLICATIONS OF FOURIER METHODS TO RANDOM WALKS 598

1. The Basic Identity 598
*2. Finite Intervals. Wald's Approximation 601
3. The Wiener-Hopf Factorization 604
4. Implications and Applications 609
5. Two Deeper Theorems 612
6. Criteria for Persistency 614
7. Problems for Solution 616

CHAPTER

XIX HARMONIC ANALYSIS 619

1. The Parseval Relation 619
2. Positive Definite Functions 620
3. Stationary Processes 623
4. Fourier Series 626
*5. The Poisson Summation Formula 629
6. Positive Definite Sequences 633
7. L^2 Theory 635
8. Stochastic Processes and Integrals 641
9. Problems for Solution 647

ANSWERS TO PROBLEMS 651

SOME BOOKS ON COGNATE SUBJECTS 655

INDEX .. 657